ANTIBIOTIC RESISTANCE OF BACTERIA OF THE FAMILY PASTEURELLACEAE, PATHOGENS OF RESPIRATORY INFECTIONS OF CATTLE AND PIGS

  • T. I. Stetsko State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 11, Donetska str., Lviv. 79019, Ukraine
Keywords: ANTIBIOTIC RESISTANCE, PASTEURELLACEAE, CATTLE, PIGS, RESISTANCE GENES, PLASMIDS.

Abstract

In the article a literature review of scientific papers on the topic of antimicrobial resistance of bacteria of the family Pasteurellaceae, pathogens of respiratory diseases in pigs and cattle, is presented.

The main mechanisms of the development of Pasteurellaceae resistance to β-lactam antibiotics are the synthesis of β-lactamases by bacteria, what are able to break the beta-lactam ring, thereby inactivating β-lactams, or alteration of the penicillin-binding proteins structure. Other mechanisms, such as reduced permeability of the outer membrane or the process of active removal of antibiotics from the bacterial cell (efflux), are very rare. Resistance among Pasteurellaceae to β-lactams is often associated with plasmids.

Eflux and ribosomal protection are the main mechanisms for the development of resistance of Pasteurellaceae to tetracyclines. At least nine tetracycline resistance genes (tet genes) have been identified in bacteria of the genus Pasteurella, Mannheimia, Actinobacillus and Haemophilus, what encode these processes.

Resistance to aminoglycosides and aminocyclitols is mainly caused by enzymatic inactivation of antibiotics, as well as through mutations in chromosomal genes. Many plasmids carry genes of resistance to aminoglycosides, causing resistance to antibiotics of other groups.

Chemical modification of a ribosomal target by rRNA methylases and mutations in ribosomal proteins are the main resistance mechanisms of bacteria of the family Pasteurellaceae to macrolides. Many gram-negative bacteria have a natural resistance to macrolide antibiotics. The development of lincosamide resistance is influenced by methyltransferase 23S rRNA, active efflux proteins, enzymatic inactivation and chromosomal mutations.

Resistance of bacteria of the family Pasteurellaceae to chloramphenicol is caused mainly by enzymatic inactivation, while the emergence of resistance to fluorophenicol is associated with the efflux of an antibiotic from a bacterial cell. Plasmids carrying phenicol resistance genes were detected in isolates of P. multocida, M. haemolytica, A. pleuropneumoniae and H. parasuis.

Usually the level of bacteria sensitivity of the genus Pasteurella, Mannheimia, Actinobacillus and Haemophilus to quinolones is quite high. Resistance to quinolones mainly occurs due to mutational alterations in chromosomal genes, and may also be in consequence of the export antibiotics from the cell by membrane proteins or thanks to qnr genes of plasmids.

The main mechanism of resistance to sulfonamides and trimethoprim is both plasmid-mediated and mutation-induced production of altered dihydropteroate synthetase and dihydrofolate reductase with reduced affinity with these antimicrobials.

Monitoring of antibiotic resistance with the determination of its mechanism phenomenon will facilitate the choice of an effective agent of etiotropic therapy of respiratory diseases of cattle and pigs caused by bacteria of the family Pasteurellaceae.

References

Archambault, M., Harel, J., Goure´, J., Tremblay, Y.D.N., Jacques, M. (2012). Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb Drug Resist, 18(2), 198–206. doi: 10.1089/mdr.2011.0150.

Azad, A.K., Coote, J.G., Parton, R. (1992). Distinct plasmid profiles of Pasteurella haemolytica serotypes and the characterization and amplification in Escherichia coli of ampicillin-resistance plasmids encoding ROB-1 β-lactamase. J Gen Microbiol, 138(6), 1185–1196. doi: 10.1099/00221287-138-6-1185.

Blanco, M., Gutiérrez-Martin, C.B., Rodríguez-Ferri, E.F., Roberts, M.C., Navas, J. (2006). Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother, 50(2), 702–708. doi: 10.1128/AAC.50.2.702-708.2006.

Blanco, M., Kadlec, K., Gutiérrez-Martin, C.B., de la Fuente, A.J., Schwarz, S., Navas, J. (2007). Nucleotide sequence and transfer properties of two novel types of Actinobacillus pleuropneumoniae plasmids carrying the tetracycline resistance gene tet(H). J Antimicrob Chemother, 60(4), 864–867. doi: 10.1093/jac/dkm293.

Bosse, J.T., Li, Y., Atherton, T.G., Walker, S., Williamson, S.M., Rogers, J. et al. (2015). Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Vet Microbiol, 178(3-4), 279–282. doi: 10.1016/j.vetmic.2015.05.020.

Brockmeier, S.L., Halbur, P.G., Thacker, E.L. (2002). Porcine respiratory disease complex, p 231–258. In Brogden, K.A., Guthmiller, J.M. (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch13.

Castanon, J.I.R. (2007). History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poultry Science, 86(11), 2466–2471. doi:10.3382/ps.2007-00249.

Chander, Y., Oliveira, S., Goyal, S.M. (2011). Characterisation of ceftiofur resistance in swine bacterial pathogens. Vet J, 187, 139–141. doi: 10.1016/j.tvjl.2009.10.013.

Chang, Y.F., Shi, J., Shin, S.J., Lein, D.H. (1992a). Sequence analysis of the ROB-1 β-lactamase gene from Actinobacillus pleuropneumoniae. Vet Microbiol, 32(3-4), 319–325. doi: 10.1016/0378-1135(92)90154-l.

Chang, Y.F., Ma, D.P., Bai, H.Q., Young, R., Struck, D.K., Shin, S.J. et al. (1992b). Characterization of plasmids with antimicrobial resistant genes in Pasteurella haemolytica A1. DNA Seq, 3(2), 89–97. doi: 10.3109/10425179209034001.

Chang, C.-F., Yeh, T.-M., Chou, C.-C., Chang, Y.-F., Chiang, T.-S. (2002). Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan. Vet Microbiol, 84(1-2),169–177. doi: 10.1016/s0378-1135(01)00459-x.

Chaslus-Dancla, E., Lesage-Descauses, M.-C., Leroy-Se´trin, S., Martel, J.-L., Lafont, J.-P. (1995). Tetracycline resistance determinants, Tet B and Tet M, detected in Pasteurella haemolytica and Pasteurella multocida from bovine herds. J Antimicrob Chemother, 36(5), 815–819. doi: 10.1093/jac/36.5.815.

Christensen, H. and Bisgaard, M. (2008). Taxonomy and biodiversity of members of Pasteurellaceae, p. 1–25. In Kuhnert, P., Christensen, H. (ed), Pasteurellaceae: Biology, Genomics and Molecular Aspects. Caister Academic Press, Norfolk, United Kingdom.

Cote, S., Harel, J., Higgins, R., Jacques, M. (1991). Resistance to antimicrobial agents and prevalence of R plasmids in Pasteurella multocida from swine. Am J Vet Res, 52(12), 1653–1657. PMID: 1767987.

Da Silva, G.C., Rossi, C.C., Santana, M.F., Langford, P.R., Bosse, J.T., Bazzolli, D.M.S. (2017). p518, A small floR plasmid from a South American isolate of Actinobacillus pleuropneumoniae. Vet Microbiol, 204, 129–132. doi: 10.1016/j.vetmic.2017.04.019.

Dayao, D., Gibson, J.S., Blackall, P.J., Turni, C. (2016). Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust Vet J, 94(7), 227–231. doi: 10.1111/avj.12458.

Desmolaize, B., Rose, S., Warrass, R., Douthwaite, S. (2011). A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida. Mol Microbiol, 80(1), 184–194. doi: 10.1111/j.1365-2958.2011.07567.x.

De Stasio, E.A., Moazed, D., Noller, H.F., Dahlberg, A.E. (1989). Mutations in 16S ribosomal RNA disrupt antibioticRNA interactions. EMBO J, 8(4), 1213–1216. PMC400937.

Eidam, C., Poehlein, A., Leimbach, A., Michael, G.B., Kadlec, K., Liesegang, H. et al. (2015). Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother, 70(1), 93–97. doi: 10.1093/jac/dku361.

Galimand, M., Gerbaud, G., Courvalin, P. (2000). Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob Agents Chemother, 44(5), 1365–1366. doi: 10.1128/aac.44.5.1365-1366.2000.

Gilbride, K.A., Rosendal, S., Brunton, J.L. (1989). Plasmid mediated antimicrobial resistance in Ontario isolates of Actinobacillus (Haemophilus) pleuropneumoniae. Can J Vet Res, 53(1), 38–42. PMC1255510.

Guo, L., Zhang, J., Xu, C., Zhao, Y., Ren, T., Zhang, B. et al. (2011). Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. J Antimicrob Chemother, 66(3), 539–542. doi: 10.1093/jac/dkq497.

Hansen, L.M., McMurry, L.M., Levy, S.B., Hirsh, D.C. (1993). A new tetracycline resistance determinant, Tet H, from Pasteurella multocida specifying active efflux of tetracycline. Antimicrob Agents Chemother, 37(12), 2699–2705. doi: 10.1128/aac.37.12.2699.

Hirsh, D.C., Martin, L.D., Rhoades, K.R. (1981). Conjugal transfer of an R-plasmid in Pasteurella multocida. Antimicrob Agents Chemother, 20(3), 415–417. doi: 10.1128/aac.20.3.415.

Hodgins, D.C., Conlon, J.A., Shewаn, P.E. (2002). Respiratory viruses and bacteria in cattle, 213–229. In Brogden, K.A., Guthmiller, J.M. (ed), Polymicrobial Diseases. ASM Press, Washington, DC. PMID: 21735561.

Juteau, J.-M. and Levesque, R.C. (1990). Sequence analysis and evolutionary perspectives of ROB-1 β-lactamase. Antimicrob Agents Chemother, 34(7), 1354–1359. doi: 10.1128/aac.34.7.1354.

Ishii, H., Hayashi, F., Iyobe, S., Hashimoto, H. (1991). Characterization and classification of Actinobacillus (Haemophilus) pleuropneumoniae plasmids. Am J Vet Res, 52(11), 1816–1820. PMID: 1785724.

Ishii, H., Fukuyasu, T., Iyobe, S., Hashimoto, H. (1993). Characterization of newly isolated plasmids from Actinobacillus pleuropneumoniae. Am J Vet Res, 54(5), 701–708. PMID: 8317761.

Ito, H., Ishii, H., Akiba, M. (2004). Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. Plasmid, 51(1), 41–47. doi: 10.1016/j.plasmid.2003.10.001.

Kadlec, K., Brenner Michael, G., Sweeney, M.T., Brzuszkiewicz, E., Liesegang, H., Daniel, R., Watts, J.L., Schwarz, S. (2011) Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother, 55(5), 2475–2477. doi: 10.1128/AAC.00092-11.

Kang, M., Zhou, R., Liu, L., Langford, P.R., Chen, H. (2009). Analysis of an Actinobacillus pleuropneumoniae multiresistance plasmid, pHB0503. Plasmid, 61(2), 135–139. doi: 10.1016/j.plasmid.2008.11.001.

Katsuda, K., Kohmoto, M., Mikami, O., Tamamura, Y., Uchida, I. (2012). Plasmid-mediated florfenicol resistance in Mannheimia haemolytica isolated from cattle. Vet Microbiol, 155(2-4), 444–447. doi: 10.1016/j.vetmic.2011.09.033.

Kawahara, K., Kawase, H., Nakai, T., Kume, K., Danbara, H. (1990). Drug resistance plasmids of Actinobacillus (Haemophilus) pleuropneumoniae serotype 2 strains isolated from swine. Kitasato Arch Exp Med, 63, 131–136. PMID: 2096258.

Kehrenberg, C. and Schwarz, S. (2001). Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. FEMS Microbiol Lett, 205(2), 283–290. doi: 10.1111/j.1574-6968.2001.tb10962.x.

Kehrenberg, C., Tham, N.T.T., Schwarz, S. (2003). New plasmid-borne antibiotic resistance gene cluster in Pasteurella multocida. Antimicrob Agents Chemother, 47(9), 2978–2980. doi: 10.1128/AAC.47.9.2978-2980.2003.

Kehrenberg, C. and Schwarz, S. (2005a). Molecular basis of resistance to kanamycin and neomycin in Pasteurella and Mannheimia isolates of animal origin. Abstr A47, ASM Conference on Pasteurellaceae 2005, p. 55.

Kehrenberg, C. and Schwarz, S. (2005b). dfrA20, A novel trimethoprim resistance gene from Pasteurella multocida. Antimicrob Agents Chemother, 49(1), 414–417. doi: 10.1128/AAC.49.1.414-417.2005.

Kehrenberg, C. and Schwarz, S. (2005c). Plasmid-borne florfenicol resistance in Pasteurella multocida. J Antimicrob Chemother, 55(5), 773–775. doi: 10.1093/jac/dki102.

Kehrenberg, C., Catry, B., Haesebrouck, F., de Kruif, A., Schwarz, S. (2005). tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother, 56(2), 403–406. doi:10.1093/jac/dki210.

Kehrenberg, C., Walker, R.D., Wu, C.C., Schwarz, S. (2006a). Antimicrobial resistance in members of the family Pasteurellaceae, p 167–186. In Aarestrup, F.M. (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch11.

Kehrenberg, C., Meunier, D., Targant, H., Cloeckaert, A., Schwarz, S., Madec, J.-Y. (2006b). Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. J Antimicrob Chemother, 58, 13–17. doi: 10.1093/jac/dkl174.

Kehrenberg, C. and Schwarz, S. (2007). Mutations in 16S rRNA and ribosomal protein S5 associated with highlevel spectinomycin resistance in Pasteurella multocida. Antimicrob Agents Chemother, 51(6), 2244–2246. doi: 10.1128/AAC.00229-07.

Kehrenberg, C., Wallmann, J., Schwarz, S. (2008). Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. J Antimicrob Chemother, 62(5), 951–955. doi: 10.1093/jac/dkn359.

Kehrenberg, C. and Schwarz, S. (2011). Trimethoprim resistance in a porcine Pasteurella aerogenes isolate is based on a dfrA1 gene cassette located in a partially truncated class 2 integron. J Antimicrob Chemother, 66(2), 450–452. doi:10.1093/jac/dkq461.

Kim, B., Hur, J., Lee, J.Y., Choi, Y., Lee, J.H. (2016). Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea. Vet Q, 36(3), 137–144. doi: 10.1080/01652176.2016.1155241.

Kiuchi, A., Hara, M., Tabuchi, K. (1992). Drug resistant plasmid of Actinobacillus pleuropneumoniae isolated from swine pleuropneumonia in Thailand. Kansenshogaku Zasshi, 66(9), 1243–1247. doi: 10.11150/kansenshogakuzasshi1970.66.1243.

Klima, C.L., Zaheer, R., Cook, S.R., Booker, C.W., Hendrick, S., Alexander, T.W. et al. (2014). Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol, 52(2), 438–448. doi: 10.1128/JCM.02485-13.

Kong, L.C., Gao, D., Gao, Y.H., Liu, S.M., Ma, H.X. (2014). Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China. J Vet Med Sci, 76, 1655–1657. doi: 10.1292/jvms.14-0240.

Lalonde, G., Miller, J.F., Tompkins, L.S., O’Hanley, P. (1989). Transformation of Actinobacillus pleuropneumoniae and analysis of R factors by electroporation. Am J Vet Res, 50(11), 1957–1960. PMID: 2619125.

Lancashire, J.F., Terry, T.D., Blackall, P.J., Jennings, M.P. (2005). Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. Antimicrob Agents Chemother, 49(5), 1927–1931. doi: 10.1128/AAC.49.5.1927-1931.2005.

Li, B., Zhang, Y., Wei, J., Shao, D., Liu, K., Shi, Y. et al. (2015). Characterization of a novel small plasmid carrying the florfenicol resistance gene floR in Haemophilus parasuis. J Antimicrob Chemother, 70(11), 3159–3161. doi: 10.1093/jac/dkv230.

Livrelli, V.O., Darfeuille-Richaud, A., Rich, C.D., Joly, B.H., Martel, J.-L. (1988). Genetic determinant of the ROB-1 β-lactamase in bovine and porcine Pasteurella strains. Antimicrob Agents Chemother, 32(8), 1282–1284. doi: 10.1128/aac.32.8.1282.

Livrelli, V., Peduzzi, J., Joly, B. (1991). Sequence and molecular characterization of the ROB-1 β-lactamase gene from Pasteurella haemolytica. Antimicrob Agents Chemother, 35(2), 242–251. doi: 10.1128/aac.35.2.242.

Magyar, T. and Lax, A.J. (2002). Atrophic rhinitis, p 169–197. In Brogden, K.A., Guthmiller, J.M. (ed), Polymicrobial Diseases. ASM Press, Washington, DC.

Matter, D., Rossano, A., Limatm S., Vorlet-Fawerm L., Brodardm I., Perretenm V. (2007). Antimicrobial resistance profile of Actinobacillus pleuropneumoniae and Actinobacillus porcitonsillarum. Vet Microbiol, 122, 146–156.

Michael, G.B., Kadlec, K., Sweeney, M.T., Brzuszkiewicz, E., Liesegang, H., Daniel, R. et al. (2012a). ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother, 67(1), 84–90. doi: 10.1093/jac/dkr406.

Michael, G.B., Eidam, C., Kadlec, K., Meyer, K., Sweeney, M.T., Murray, R.W. еt al. (2012b). Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm (42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J Antimicrob Chemother, 67(6), 1555–1557. doi: 10.1093/jac/dks076.

Moleres, J., Santos-López, A., Lázaro, I., Labairu, J., Prat, C., Ardanuy, C. et al. (2015). Novel blaROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl Environ Microbiol, 81(9), 3255–3267. doi: 10.1128/AEM.03865-14.

Morioka, A., Asai, T., Nitta, H., Yamamoto, K., Ogikubo, Y., Takahashi, T. et al. (2008). Recent trends in antimicrobial susceptibility and the presence of the tetracycline resistance gene in Actinobacillus pleuropneumoniae isolates in Japan. J Vet Med Sci, 70, 1261–1264. doi: 10.1292/jvms.70.1261.

Naas, T., Benaoudia, F., Lebrun, L., Nordmann, P. (2001). Molecular identification of TEM-1 β-lactamase in a Pasteurella multocida isolate of human origin. Eur J Clin Microbiol Infect Dis, 20, 210–213. doi: 10.1007/PL00011254.

Noyes, N.R., Benedict, K.M., Gow, S.P., Booker, C.W., Hannon, S.J., McAllister, T.A. et al. (2015). Mannheimia haemolytica in feedlot cattle: prevalence of recovery and associations with antimicrobial use, resistance, and health outcomes. J Vet Intern Med, 29(2), 705–713. doi: 10.1111/jvim.12547.

O’Connor, M. and Dahlberg, A.E. (2002). Isolation of spectinomycin resistance mutations in the 16S rRNA of Salmonella enterica serovar Typhimurium and expression in Escherichia coli and Salmonella. Curr Microbiol, 45, 429–433. doi: 10.1007/s00284-002-3684-y.

Oka, A., Sugisaki, H., Takanami, M. (1981). Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol, 147(2), 217–226. doi: 10.1016/0022-2836(81)90438-1.

Olsen, A.S., Warrass, R., Douthwaite, S. (2015). Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother, 70(2), 420–423. doi:10.1093/jac/dku385.

Perino, L.J. and Apley, M. (1999). Bovine respiratory disease. In Howard J L, Smith R A (eds) Current Veterinary Therapy. W B Saunders, Philadelphia: 446-455.

Poole, K. (2005). Efflux-mediated antimicrobial resistance. J Antimicrob Chemother, 56(1), 20–51. doi: 10.1093/jac/dki171.

Post, K.W., Cole, N.A., Raleigh, R.H. (1991). In vitro antimicrobial susceptibility of Pasteurella haemolytica and Pasteurella multocida recovered from cattle with bovine respiratory disease complex. J Vet Diagn Invest, 3(2), 124-6. doi: 10.1177/104063879100300203.

Radostits, O.M., Gay, C., Blood, D.C., Hinchcliff, K.W. (2000) Diseases caused by bacteria III, p 779–908. In Radostits, O.M., Gay, C., Blood, D.C., Hinchcliff, K.W. (eds), Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats, and horses. 9th ed. Saunders, Philadelphia, London.

Rossmanith, S.E.R., Wilt, G.R., Wu, G. (1991). Characterization and comparison of antimicrobial susceptibilities and outer membrane protein and plasmid DNA profiles of Pasteurella haemolytica and certain other members of the genus Pasteurella. Am J Vet Res, 52(12), 2016–2022. PMID: 1789515.

San Millan, A., Escudero, J.A., Gutierrez, B., Hidalgo, L., Garcia, N., Llagostera, M. et al. (2009). Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother, 53(8), 3399–3404. doi: 10.1128/AAC.01522-08.

Schwarz, S., Spies, U., Schafer, F., Blobel, H. (1989). Isolation and interspecies-transfer of a plasmid from Pasteurella multocida encoding for streptomycin resistance. Med Microbiol Immunol, 178(2), 121–125. doi: 10.1007/BF00203308.

Schwarz, S., Kehrenberg, C., Doublet, B., Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev, 28(5), 519–542. doi: 10.1016/j.femsre.2004.04.001.

Schwarz, S., Cloeckaert, A., Roberts, M.C. (2006). Mechanisms and spread of bacterial resistance to antimicrobial agents, p 73–98. In Aarestrup, F.M. (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.

Schwarz, S., Alesık, E., Grobbel, M., Lübke-Becker, A., Werckenthin, C., Wieler, L.H. et al. (2007). Antimicrobial susceptibility of Pasteurella multocida and Bordetella bronchiseptica from dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr, 120(9-10), 423–430. PMID: 17939457.

Schwarz, S. (2008). Mechanisms of antimicrobial resistance in Pasteurellaceae, p 199–228. In Kuhnert, P., Christensen, H. (ed), Pasteurellaceae: Biology, Genomics and Molecular Aspects. Caister Academic Press, Norfolk, United Kingdom.

Singh, K., Ritchey, J.W., Confer, A.W. (2011). Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Vet Pathol, 48, 338–348. doi: 10.1177/0300985810377182.

Timsit, E., Hallewell, J., Booker, C., Tison, N., Amat, S., Alexander, T.W. (2017). Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Veterinary Microbiology, 27(208), 118-125. doi: 10.1016/j.vetmic.2017.07.013.

Van Donkersgoed, J. Janzen, E.D., Harland, R.J. (1990). Epidemiological features of calf mortality due to hemophilosis in a large feedlot. Can Vet J, 31, 821-5. PMCID: PMC1480899.

Vassort-Bruneau, C., Lesage-Descauses, M.C., Martel, J.-L., Lafont, J.-P., Chaslus-Dancla, E. (1996). CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. J Antimicrob Chemother, 38(2), 205–213. doi: 10.1093/jac/38.2.205.

Wallmann, J., Schröer, U.N.D., Kaspar, H. (2007). Quantitative resistance level (MIC) of bacterial pathogens (Escherichia coli, Pasteurella multocida, Pseudomonas aeruginosa, Salmonella spp., Staphylococcus aureus) isolated from chickens and turkeys: national resistance monitoring by the BVL 2004/2005. Berl Munch Tierarztl Wochenschr, 120, 452–463. doi: 10.2376/0005-9366-120-452.

Wang, Y.C., Chan, J.P.W., Yeh, K.S., Chang, C.C., Hsuan, S.L., Hsieh, Y.M. et al. (2010). Molecular characterization of enrofloxacin resistant Actinobacillus pleuropneumoniae isolates. Vet Microbiol, 142(3-4), 309–312. doi: 10.1016/j.vetmic.2009.09.067.

Wasteson, Y., Roe, D.E., Falk, K., Roberts, M.C. (1996). Characterization of tetracycline and erythromycin resistance in Actinobacillus pleuropneumoniae. Vet Microbiol, 48(1-2), 41–50. doi: 10.1016/0378-1135(95)00130-1.

WHO. Antimicrobial resistance. Global report on surveillance. Bulletin of the World Health Organization. 2014;.61:383-394. doi: 10.1007/s13312-014-0374-3.

Willson, P.J., Deneer, H.G., Potter, A., Albritton, W. (1989). Characterization of a streptomycin-sulfonamide resistance plasmid from Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother, 33(2), 235–238. doi: 10.1128/aac.33.2.235.

Wu, J.-R., Shieh, H.K., Shien, J.-H., Gong, S.-R., Chang, .P-C. (2003). Molecular characterization of plasmids with antimicrobial resistant genes in avian isolates of Pasteurella multocida. Avian Dis, 47(4), 1384–1392. doi: 10.1637/z7035.

Yamamoto, J., Sakano, T., Shimizu, M. (1990). Drug resistance and R plasmids in Pasteurella multocida isolates from swine. Microbiol Immunol, 34(9), 715–721. doi: 10.1111/j.1348-0421.1990.tb01049.x.

Yoo, A.N., Cha, S.B., Shin, M.K., Won, H.K., Kim, E.H., Choi, H.W. et al. (2014). Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates. Vet Rec, 174(9), 223. doi: 10.1136/vr.101863.

Zhang, Q., Zhou, M., Song, D., Zhao, J., Zhang, A., Jin, M. (2013). Molecular characterisation of resistance to fluoroquinolones in Haemophilus parasuis isolated from China. Int J Antimicrob Agents, 42(1), 87–8. doi: 10.1016/j.ijantimicag.2013.03.011.

Zimmerman, M.L. and Hirsh, D.C. (1980). Demonstration of an R plasmid in a strain of Pasteurella haemolytica isolated from feedlot cattle. Am J Vet Res, 41(2), 166–169. PMID: 6989297.

Published
2021-03-29
How to Cite
Stetsko, T. I. (2021). ANTIBIOTIC RESISTANCE OF BACTERIA OF THE FAMILY PASTEURELLACEAE, PATHOGENS OF RESPIRATORY INFECTIONS OF CATTLE AND PIGS. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology, 22(1), 197-208. https://doi.org/10.36359/scivp.2021-22-1.24